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Comparison of splitting algorithms for the rigid body
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Abstract

We compare several different second-order splitting algorithms for the asymmetric rigid body, with the aim of

determining which one produces the smallest energy error for a given rigid body, namely, for given moments of inertia.

The investigation is based on the analysis of the dominant term of the modified Hamiltonian and indicates that different

algorithms can produce energy errors which differ by several orders of magnitude. As a byproduct of this analysis we

remark that, for the special case of a flat rigid body with moments of inertia proportional to (1; 0:75; 0:25), one of the
considered algorithms is in fact of order four.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

(A) A variety of numerical algorithms have been developed for the integration of the equations of

motion of the rigid body. Nowadays, in areas such as Celestial Mechanics and Molecular Dynamics, there

is special interest for symplectic algorithms and, among them, for splitting algorithms. The purpose of this

article is to compare a few second-order splitting algorithms for the asymmetric rigid body, i.e., the rigid

body with three different moments of inertia I1, I2, and I3. Even though the interesting case is that of a body

subject to external forces and with no fixed point, we focus the analysis on the case of a rigid body with a

fixed point and no external forces—the so-called ‘‘Euler–Poinsot’’ system. The reason is that, ordinarily, an

algorithm for the Euler–Poinsot flow is used in splitted algorithms for the general case and hence its quality
affects the quality of the overall algorithm. We shall come back on this point in Section 5.

If the three moments of inertia are all different, the computation of the flow of the Euler–Poinsot system

requires the evaluation of a few special functions and the solution of a time-dependent ordinary differential

equation (see e.g. [6]). It would be of great interest to possess an efficient numerical algorithm for
E-mail address: fasso@math.unipd.it.

URL: www.math.unipd./~fasso.

0021-9991/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00232-8

mail to: fasso@math.unipd.it.�URL:
mail to: fasso@math.unipd.it.�URL:
www.math.unipd./~fasso


528 F. Fass�oo / Journal of Computational Physics 189 (2003) 527–538
performing this computation exactly (that is, to machine precision), but there appear to be difficulties

related, in particular, to the integration of the time-dependent ODE. Therefore, approximate algorithms are

usually employed.

Splitting algorithms for a Hamiltonian system rely on the possibility of writing the Hamiltonian K as the

sum of two or more functions, the Hamiltonian flows of which can be computed exactly (and efficiently). If

K ¼ F1 þ F2 and if UF
h denotes the map at time h of the flow of a Hamiltonian F , then the so-called Strang

splitting UF2
h=2 � UF1

h � UF2
h=2 is a second-order algorithm for UK

h :

UK
h ¼ UF2

h=2 � UF1
h � UF2

h=2 þ Oðh3Þ:

Similarly, if K ¼ F1 þ F2 þ F3, then

UK
h ¼ UF3

h=2 � UF2
h=2 � UF1

h � UF2
h=2 � UF3

h=2 þ Oðh3Þ:

These algorithms are obviously symplectic and exhibit the typical good properties of symplectic algorithms,
including good energy conservation (see [5] for general background on these algorithms).

To our knowledge, the use of splitting algorithms for rigid body dynamics was proposed by Touma and

Wisdom [11], McLachlan [8] and Reich [10]. The basis of the method is easily explained. The Hamiltonian

K of the Euler–Poinsot system is the kinetic energy. Denoting by M ¼ ðM1;M2;M3Þ the angular momentum

vector in the body base, the axes of which are the principal axes of inertia of the body, one has

KðM ; I1; I2; I3Þ ¼
M2

1

2I1
þM2

2

2I2
þM2

3

2I3
ð1Þ

(see e.g. [1,2,7] for all the necessary background on rigid body dynamics). Now, while it is difficult to

compute exactly the flow of K, it is easy (and efficient) to compute exactly the flows of the three ‘‘rota-

tional’’ Hamiltonians

RjðM ; IjÞ ¼
M2

j

2Ij
; j ¼ 1; 2; 3 ð2Þ

and the flow of the Hamiltonian S of the symmetric Euler–Poinsot system, which has two moments of

inertia equal, say I1 ¼ I2,

SðM ; I2; I3Þ ¼
M2

1 þM2
2

2I2
þM2

3

2I3
ð3Þ

(see the Remark). By suitably combining these flows, one can construct a number of second-order ap-

proximations to UK . A few natural choices considered in the above-mentioned references, or simple variants

of them, are the following:

(i) The Symmetric +Rotation (‘‘SR’’) splitting

WSR
h ¼ UR

h=2 � US
h � UR

h=2

obtained by decomposing K as the sum of a symmetric rigid body Hamiltonian and of a suitable ro-

tational term: KðM ; I1; I2; I3Þ ¼ SðM ; I2; I3Þ þ RðM ; I1; I2Þ for S as in (3) and

RðM ; I1; I2Þ ¼
1

2

1

I1

�
� 1

I2

�
M2

1 :

(ii) The Rotation+Symmetric (‘‘RS’’) splitting

WRS
h ¼ US

h=2 � UR
h � US

h=2
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which differs from the previous one just in the ordering. Of course, these two algorithms are ‘‘conju-

gate’’, that is

WRS
h ¼ C � WSR

h � C�1; C ¼ US
h=2 � UR

h=2:

Therefore, by iteration, they produce algorithms with the same properties—actually, essentially the

same algorithm: ðWRS
h Þn ¼ C � ðWSR

h Þn � C�1 (see [5] for the properties of conjugate algorithms). How-
ever, conjugacy may be lost if these algorithms are used for constructing splitting algorithms for a rigid

body with external forces, see Section 5. Hence, we consider them separately.

(iii) The Three Rotations (‘‘3R’’) splitting

W3R
h ¼ UR3

h=2 � UR2

h=2 � UR1

h � UR2

h=2 � UR3

h=2
which is based on the decomposition of K as the sum R1 þ R2 þ R3 of the three rotational terms as in

(2). Some pairs of these algorithms are conjugate, e.g., those with orderings ðImin; Imid; ImaxÞ and

ðImax; Imid; IminÞ, but here too conjugacy may be lost if an external potential is added.
Note that for a given body, namely for given moments of inertia Imin < Imid < Imax, there are six different

algorithms of each type SR, RS and 3R, which are obtained by choosing ðI1; I2; I3Þ as all possible per-
mutations of ðImin; Imid; ImaxÞ.

Remark. These algorithms have been implemented in a variety of ways. In all cases, computing US
h and URj

h

requires the evaluation of only four and, respectively, two trigonometric functions, besides a small number
of algebraic operations. Touma and Wisdom [11], McLachlan [8] and Reich [10] resorted to the left triv-

ialization of T �SOð3Þ. This leads to a ‘‘Lie–Poisson’’ algorithm for solving the Euler equations for the

angular momentum vector in the body base and to an algorithm for either a rotational matrix or for a unit

quaternion (in fact, the use of quaternions has some advantages). We refer the reader to [4] for an ex-

haustive treatment of the problem and for the implementation details. More recently, an implementation

which uses two charts with Euler angles, so as to avoid the singularity of these coordinates, has also been

developed [3]. However, such an implementation is not as simple as the quaternionic one and, in the au-

thor�s experience, slightly less efficient.

(B) The purpose of this article is to compare the above splitting algorithms, with the aim of determining

whether they produce significantly different errors in the energy conservation and, in such a case, which one
is the ‘‘best’’ one, in the sense that it produces the smallest energy error for given rigid body, namely, for

given moments of inertia ðImin; Imid; ImaxÞ. Of course, it is expected that some SR or RS algorithm performs

better for nearly symmetric bodies but, as it will be seen, even in this limit case it is a priori not clear which

is the best one.

Following a well-established procedure, see e.g. [9], we base the investigation on the fact that, as many

other symplectic algorithms, any splitting algorithm Wh for UK
h possesses a ‘‘modified Hamiltonian’’

~KK ¼ K þ h2

12
~KK2 þ Oðh4Þ

such that

Wh ¼ U
~KK
h þ Oðexpð�1=hÞÞ:

Hence, up to quantities of the order of expð�1=hÞ, the energy error is given by

K � ~KK ¼ h2

12
~KK2 þ Oðh4Þ
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(see e.g. [5] for details and references). For small step sizes we can restrict the attention to the leading term

ðh2=12Þ ~KK2 and thus compare the functions j ~KKSR
2 ðM ; IÞj, j ~KKRS

2 ðM ; IÞj and j ~KK3R
2 ðM ; IÞj for all possible per-

mutations of the three moments of inertia. We shall define as ‘‘best’’ algorithm for given I ¼ ðImin; Imid; ImaxÞ
the one for which such a leading term, as a function of M , has the smallest maximum. Some limitations

implicit to this approach are discussed in Section 5.

This analysis demonstrates that the choice of the algorithm can be very important since it can (and

typically does) affect the energy error by a factor 10 or 100, or more. Therefore, for practical purposes,

it is important to possess an a priori knowledge of the ‘‘best’’ algorithm as a function of the moments
of inertia. As we shall see, the two algorithms SR and RS, with appropriate orderings of Imin; Imid; Imax,

are equivalent at the leading order considered here. In the space of moments of inertia there are of

course regions where the best algorithm is any of these two, with an appropriate (but not a priori

obvious) ordering. However, there is also a region where the best algorithm is 3R with ordering

ðImax; Imid; IminÞ. Interestingly, this is related to the fact that, as we shall point out, the function
~KK3R
2 ðM ; Imax; Imid; IminÞ vanishes for a flat body with moments of inertia proportional to (4; 3; 1), so that

such a 3R splitting algorithm is in such a case a fourth-order algorithm and obviously outperforms all

others.
2. The modified Hamiltonians

It is a well-known fact that the leading term ~KK2 of the modified Hamiltonian of the map UF2
h=2 � UF1

h � UF2
h=2

is

h2

12
F1

�
þ F2

2
; F1; F2f g

�
;

where f; g denote the Poisson brackets, see e.g. [5]. One immediately deduces from here that the leading

term of the modified Hamiltonian of the map UF3
h=2 � UF2

h=2 � UF1
h � UF2

h=2 � UF3
h=2 is

h2

12
F1

��
þ F2

2
; F1; F2f g

�
þ F1

�
þ F2 þ

F3
2
; F1f þ F2; F3g

��
: ð4Þ

Specializing to the rigid body algorithms introduced before, and using M1;M2f g ¼ M3 etc., we obtain

~KKSR
2 ¼ I1 � I2

I1I2

I2 � I3
I2I3

I2 � I3
I2I3

M2
3 M2

1

��
�M2

2

�
� I1 � I2

2I1I2
M2

1 M2
2

�
�M2

3

��
; ð5Þ
~KKRS
2 ¼ � I1 � I2

I1I2

I2 � I3
I2I3

I1 � I2
I1I2

M2
1 M2

3

��
�M2

2

�
� I2 � I3

2I2I3
M2

3 M2
2

�
�M2

1

��
; ð6Þ
~KK3R
2 ¼ 1

I1I2

M2
1

I1
M2

3

��
�M2

2

�
þM2

2

2I2
M2

1

�
�M2

3

��
þ I1 � I2

I1I2I3

M2
1

I1
M2

3

��
�M2

2

�
þM2

2

I2
M2

1

�
�M2

3

�
þM2

3

2I3
M2

2

�
�M2

1

��
: ð7Þ

For the present analysis, we have in mind situations in which the algorithm is applied to the integration
of the motion of a rigid body without an a priori knowledge of the position of its angular momentum vector

relative to the body—a typical situation in presence of strong interactions. Therefore, we measure the

quality of an algorithm by the maximum (relative) energy error over all values of M .
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Since the quadratic terms ~KKRS
2 , ~KKSR

2 and ~KK3R
2 are homogeneous polynomials of degree four in

M ¼ ðM1;M2;M3Þ, we can restrict the analysis to the sphere kMk ¼ 1. In fact, by symmetry, all computa-

tions can be further restricted to the first octant M1 P 0, M2 P 0, M3 P 0 of the unit sphere, but to keep the

notation simple we shall not indicate this restriction. Thus, for each I ¼ ðI1; I2; I3Þ we compute the three

numbers

DjðIÞ ¼ max
kMk¼1

~KKj
2ðM ; IÞ

			 			; j ¼ SR;RS; 3R:

Of course, for a given rigid body with moments of inertia I ¼ ðImin; Imid; ImaxÞ we must consider all 18 al-

gorithms corresponding to the six permutations rðIÞ of the three moments of inertia. Thus, we define as

‘‘best algorithm’’ the one which attains

DbestðIÞ ¼ min
rðIÞ

min
j¼SR;RS;3R

DjðIÞ:

Note however that ~KKSR
2 ðM1;M2;M3; I1; I2; I3Þ ¼ � ~KKRS

2 ðM3;M2;M1; I3; I2; I1Þ, so that

min
rðIÞ

DRSðIÞ ¼ min
rðIÞ

DSRðIÞ:

Hence we need only consider the six SR and the six 3R algorithms. (Within this approach, the ‘‘best’’ SR

and the ‘‘best’’ RS algorithms cannot be distinguished. They might nevertheless perform differently for

given values of M .)

The polynomials ~KKSR
2 and ~KK3R

2 have the form

pðMÞ ¼ 4 c1M2
2M

2
3

�
þ c2M2

3M
2
1 þ c3M2

1M
2
2

�
ð8Þ

for certain coefficients c1; c2; c3 which depend on the moments of inertia. A simple argument given in

Appendix A shows that

max
kMk¼1

jpðMÞj ¼ max jc1j; jc2j; jc3j;
4c1c2c3

c21 þ c22 þ c23 � 2c1c2 � 2c2c3 � 2c1c3

				
				

� �
ð9Þ

if c1, c2, c3 are all nonzero and if the three numbers ðc2 þ c3 � c1Þc2c3, ðc3 þ c1 � c2Þc3c1, ðc1 þ c2 � c3Þc1c2
are either all positive or all negative, while otherwise

max
kMk¼1

jpðMÞj ¼ max jc1j; jc2j; jc3jð Þ: ð10Þ

Thus, the determination of the ‘‘best algorithm’’ for given I reduces to the evaluation of just three or four

numbers for each type of algorithm and for each permutation of I . (As it turns out, the maximum is always

jcmidj for the SR algorithms and either jc1j or jc2j or jc3j for the 3R�s.)
3. Special cases

If all three coefficients c1; c2; c3 vanish, then the quadratic term of the modified Hamiltonian van-
ishes identically and the algorithm is of order four or higher. This possibility clearly deserves inves-

tigation.

From (5) and (6) one sees that ~KKSR
2 ðM ; I1; I2; I3Þ and ~KKRS

2 ðM ; I1; I2; I3Þ vanish if and only if either I1 ¼ I2 or
I2 ¼ I3. The first case is obvious: the rotational Hamiltonian RðM ; I1; I2Þ vanishes when I1 ¼ I2, so that the

SR splitting reduces to the exact flow of a symmetric Euler–Poinsot system with moments of inertia

ðI1; I1; I3Þ:
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UKðM ;I1;I1;I3Þ
h ¼ WSR

h if I1 ¼ I2:

Remarkably, the same happens also when I2 ¼ I3:

UKðM ;I1;I3;I3Þ
h ¼ WSR

h if I2 ¼ I3:

The fact is that the two functions

SðM ; I3; I3Þ ¼
M2

1 þM2
2 þM2

3

2I3
and RðM ; I1; I3Þ ¼

1

2

1

I1

�
� 1

I3

�
M2

1 :

Poisson commute and their sum is the Hamiltonian KðM ; I1; I3; I3Þ. Therefore, for I2 ¼ I3, the map

WSR
h ¼ UR

h=2 � US
h � UR

h=2 ¼ USþR
h ¼ UKðM ;I1;I3;I3Þ

h is the (exact) flow of the symmetric Euler–Poinsot system.

From (7) one sees that the quadratic term ~KK3R
2 ðM ; I1; I2; I3Þ of the 3R splitting vanishes if and only if

I1 ¼ 4I3; I2 ¼ 3I3:

This implies that the 3R splitting with ordering ðImax; Imid; IminÞ is an algorithm of order four for a rigid body

with moments of inertia proportional to ð1; 3; 4Þ. We checked numerically that the algorithm is not of higher
order.

Remark. Since the 3R splitting with ordering ðImax; Imid; IminÞ is conjugate to that with ordering
ðImin; Imid; ImaxÞ, it follows that the latter, even if of order two has in fact ‘‘effective order’’ four. (See [5] for

the notion of effective order.) However, this property is lost together with the conjugacy, if an external

potential is added (see Section 5).
4. Results

Since ~KKSR
2 and ~KK3R

2 are homogeneous in ðI1; I2; I3Þ, we can normalize to one the largest moment of in-

ertia—or equivalently parameterize the results with the ratios ðx; yÞ ¼ ðImin=Imax; Imid=ImaxÞ. These two ratios

take value in the triangle

T ¼ ðx; yÞ 2 R2 : 0



< 1� y6 x < y < 1
�
;

where the condition xþ y P 1 is due to the well-known fact that the sum of any two moments of inertia of a

rigid body is larger than the third one and equals it for flat bodies (see e.g. [2]). Note that for each point

ðx; yÞ 2 T there exists a rigid body with moments of inertia (x; y; 1). (This is demonstrated by three points of
unit mass positioned on three orthogonal axes at suitable distances from the origin.) The three lines forming

the triangle T correspond to the oblate symmetric bodies (x ¼ y), to the prolate symmetric bodies (y ¼ 1)

and to the flat bodies (xþ y ¼ 1).

The results of our analysis are reported in the figures, which were constructed by numerically evaluating

the coefficients c1, c2, c3 at about 50,000 points in the triangle T.

Fig. 1 indicates the type and the ordering of the ‘‘best’’ algorithm. As expected, there is a region

adjacent the symmetric bodies where the best algorithm is one of the SR. The ordering of such a best

algorithm is ðImax; Imid; IminÞ near the oblate bodies and ðImin; Imid; ImaxÞ near the prolate ones. However,
there is also a smaller region, adjoining part of the flat bodies, where the best algorithm is 3R with

ordering ðImax; Imid; IminÞ. The curve dividing the various regions are specified in Appendix B.



Fig. 1. The ‘‘best algorithm’’ as a function of the ratios ðImin=Imax; Imid=ImaxÞ of the moments of inertia.
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Remark. At first sight, the orderings of the two ‘‘best’’ SR algorithms might appear strange. Consider for

instance the region near the prolate symmetric bodies, where Imid  Imax. One would expect that the best

algorithm for such bodies should be the one which, in the limit Imid ¼ Imax, reduces to the exact flow of the

symmetric rigid body. However, as we have seen in Section 3, the SR algorithm reduces to the exact
symmetric flow in two different ways: we can either choose

I1 ¼ Imax; I2 ¼ Imid; I3 ¼ Imin

and take the limit I2 ! I1 (so that R ! 0) or choose instead

I1 ¼ Imin; I2 ¼ Imid; I3 ¼ Imax

and take the limit I2 ! I3. It is the latter algorithm which produces the best approximation to the flow of

nearly symmetric bodies.

Fig. 2 compares the ‘‘best’’ algorithm with the ‘‘worst’’ one by plotting the ratio

rb�wðIÞ :¼
DbestðIÞ
DworstðIÞ

;

where

DworstðIÞ ¼ max max
rðIÞ

DSRðIÞ;max
rðIÞ

D3RðIÞ
� �

:

Note that rb�wðIÞ is everywhere smaller than 0.1, and in fact much smaller in some subregions. Of course,

rb�w tends to zero as one approaches the two lines y ¼ x and y ¼ 1 corresponding to symmetric bodies, since

for a symmetric body the SR algorithm with the appropriate ordering reduces to the exact flow and has

therefore no energy error. The ratio rb�wðIÞ vanishes also at ðx; yÞ ¼ ð0:25; 0:75Þ, due to the fact that one of
Fig. 2. Logarithmic contour plot of the ratio Dbest=Dworst (in the darkest region, the ratio assumes values <10�4).
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the 3R algorithm is there of order four, but the region near such a point where rb�w is very small (in fact,

smaller than 0.001) is very small and is not visible in the picture.

In order to obtain a clearer picture of the importance of properly chosing the algorithm, Fig. 3

compares the best algorithm to the ‘‘second-best’’ algorithm. As one sees, the first two best algorithms

generally perform comparably, with the ratio rb�2b ¼ Dbest=Dsecond�best larger than 0.9 in a large region,

except near (0:25; 0:75) where the best algorithm is of order four and the second-best algorithm is only of

order two.

The behaviour on the line of flat bodies is investigated further in Fig. 4, which plots the two ratios rb�w

and rb�2b as a function of Imin=Imax. It is manifest that both these quantities vanish at Imin=Imax ¼ 0:25.
Just as an example, consider the water molecule. This is a flat body with moments of inertia pro-

portional to (0:345; 0:653; 1). From Fig. 1 one deduces that the best algorithm for the water molecule is

SR with ordering ðImin; Imid; ImaxÞ. However, Fig. 3 indicates that the second-best algorithm performs

comparably to the best one. The values of the maximum error for each algorithm are thus reported in

Table 1. One sees that the best SR algorithm has an energy error over ten times smaller than the worst

algorithm, but just 1.2 times smaller than the second-best SR and 1.5 times smaller than the best 3R. The

latter fact is likely related to the fact that the water molecule lies nearby the border of the region where
the best algorithm is of type 3R. However, the overall impression is that, a priori, it is not obvious at all

which is the best choice.
Fig. 3. Contour plot of the ratio Dbest=Dsecond�best.

Table 1

Energy error for the water molecule

ðI1; I2; I3Þ DSRðIÞ D3RðIÞ

ðImin; Imid; ImaxÞ 0.22 2.37

ðImin; Imax; ImidÞ 0.23 0.55

ðImid; Imin; ImaxÞ 1.19 2.39

ðImax; Imin; ImidÞ 0.47 0.55

ðImid; Imax; IminÞ 0.85 2.56

ðImax; Imid; IminÞ 0.29 0.33

Fig. 4. The ratios Dbest=Dworst (left) and Dbest=Dsecond�best (right) for flat bodies.
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5. Conclusions

The foregoing analysis shows that, when energy conservation is an issue, a careful choice of the algo-

rithm can produce significant benefits. Within the class of second-order algorithms considered here, the

energy error may vary by several orders of magnitudes. Fig. 1 gives a simple receipt for choosing, among

these algorithms, that with the best energy conservation for given rigid body. For a full appreciation of this

result we should add that the considered algorithms have all comparable speeds. As we have already

mentioned, they all require the evaluation of six trigonometric functions at each time step, plus a number of
algebraic operations. In fact, 3R requires fewer operations than the other two and is therefore slightly

faster—about 10%, with the implementations used by the author. This difference in speed seems to be

unimportant: if energy conservation is the factor which determines the size of the time step, then the energy

error dominates the integration times.

We have necessarily restricted the attention to a few second-order algorithms for the Euler–Poinsot

system, focusing on those which appear to have received more attention. However, other second-order

splittings are conceivable and it is quite possible that some of them might perform better. In fact, the in-

dications of the present analysis seem to be that the energy error may depend significantly on the algorithm
and that it is a priori very difficult, if not impossible, to establish which performs better. Therefore, a

dedicated analysis should probably be repeated case by case.

Of course, a completely different approach should be used, if accuracy, rather than energy conservation,

is the issue. In such a case, higher-order algorithms are mandatory. In this respect, it might be interesting to

know whether the differences in the energy conservations of the second-order algorithms considered here

reflect themselves in the corresponding composition algorithms (see e.g. [5] for a review of composition

algorithms).

Our analysis rests on a number of hypotheses, three of which are particularly important. First, we have
assumed small integration steps. This is a crucial hypothesis: a second-order analysis cannot say anything

about large integration steps. Since large integration steps are a common practice, e.g., in molecular dy-

namics, this is a severe limitation. In order to gain some insight into the problem one might try to repeat the

analysis at order four.

Second, we have chosen to measure the quality of an algorithm, for a given body, from its largest energy

error, as a function of the angular momentum. This seems appropriate for situations in which the direction

of the angular momentum does not remain confined to a subregion of the unit sphere in the body. If this is

not the case, different criteria should probably be used.
Third, we have assumed that the rigid body has a fixed point and that there are no external forces. If

there are conservative forces with potential energy V , then the Hamiltonian is

H ¼ K þ V

with K as in (1). Since the exact flow of the potential energy is easily computed, second-order algorithms for

UH
h can still be obtained by splitting, e.g.

WH
h ¼ UV

h=2 � UK
h � UV

h=2 ð11Þ

(see [4,10] for the computation of UV
h within the ‘‘left–trivialized’’ implementation; when using Euler angles,

the computation is trivial [3]). Here, the flow UK
h can be approximated by any of the splitting considered

before, SR, RS or 3R: if ~KK is the modified Hamiltonian of the chosen algorithm for UK
h , then

UK
h ¼ U

~KK
h þ Oðe�1=hÞ and hence

WH
h ¼ UV

h=2 � U
~KK
h � UV

h=2 þ O e�1=h
� �

:
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Therefore, by (4), WH
h ¼ U

~HH
h þ Oðe�1=hÞ with modified Hamiltonian

~HH ¼ ~KK þ V þ h2

12
~KK

��
þ 1

2
V ; ~KK; V
n o��

þ � � �

¼ H þ h2

12
~KK2

�
þ K
�

þ V
2
; K; Vf g

��
þ � � � :

Thus, the leading term of the energy error ~HH � H differs from that of the chosen splitting for UK
h in the

quantity

h2

12
K

�
þ 1

2
V ; K; Vf g

�

which is independent of the splitting algorithm for UK
h . Therefore, even if for a specific V everything might

happen, it is anyway expected that, in general, the better the algorithm for the kinetic energy, the better the

overall algorithm. Completely similar considerations can be made for the case of a rigid body with no fixed

point.

Remark. Eq. (11) makes it clear that, as we have mentioned in Section 1, the conjugacy of two algorithms

for the Euler–Poinsot system may be lost if these algorithms are used to form a splitted algorithm for a case

with external forces. The same consideration applies to the possibility of preprocessing the algorithm for

the Euler–Poinsot systems (see [5] for the notion of preprocessing).
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Appendix A. Extrema of p(M)

We prove here that the maximum of the absolute value of the polynomial pðMÞ on the unit sphere is

given either by (9) or by (10).

Lemma. The nonzero extrema in the first octant of the unit sphere of the polynomial pðMÞ ¼ 4c1M2
2M

2
3 þ

4c2M2
3M

2
1 þ 4c3M2

1M
2
2 are located at some of the following points:

(i) The three points

0;
1ffiffiffi
2

p ;
1ffiffiffi
2

p
� �

;
1ffiffiffi
2

p ; 0;
1ffiffiffi
2

p
� �

;
1ffiffiffi
2

p ;
1ffiffiffi
2

p ; 0

� �
: ðA:1Þ

(ii) If c1c2c3 6¼ 0 and if the three numbers

k1 ¼
c2 þ c3 � c1

c2c3
; k2 ¼

c3 þ c1 � c2
2c3c1

; k3 ¼
c1 þ c2 � c3

2c1c2
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are either all positive or all negative, then also the pointffiffiffiffi
k1
k

r
;

ffiffiffiffi
k2
k

r
;

ffiffiffiffi
k3
k

r !
; ðA:2Þ

where k ¼ k1 þ k2 þ k3.
(iii) If one of the coefficients c1; c2; c3 vanishes, say ci ¼ 0, and the other two are equal to each other,

cj ¼ ck, then also all points on the circle Mi ¼ 1=
ffiffiffi
2

p
, (i ¼ 1; 2; 3).

Proof. Critical points are located at those points at which the gradient p0ðMÞ is parallel to M , that is

ðc2M2
3 þ c3M2

2 ÞM1

ðc3M2
1 þ c1M2

3 ÞM2

ðc1M2
2 þ c2M2

1 ÞM3

0
B@

1
CA ¼ c

M1

M2

M3

0
@

1
A ðA:3Þ

for some c 2 R. We divide the solutions to this equation in several different types:

1. Let us first look for solutions with M1 > 0, M2 > 0, M3 > 0. In such a case, (A.3) is equivalent to

A
M2

1

M2
2

M2
3

0
B@

1
CA ¼

c
c
c

0
@

1
A; A ¼

0 c3 c2
c3 0 c1
c2 c1 0

0
@

1
A: ðA:4Þ

Since detA ¼ 2c1c2c3 we distinguish two subcases:
1.1. If c1c2c3 6¼ 0, then (A.4) has the unique solution

M2
1

M2
2

M2
3

0
@

1
A ¼ const

k1
k2
k3

0
@

1
A;

where the normalization factor has to be chosen in such a way that kMk ¼ 1, that is,

const ¼ 1=k for k ¼ k1 þ k2 þ k3. This solution produces a critical point of the type sought
for here if and only if k1, k2 and k3 are all nonzero and have the same sign, as in case (ii)

1.2. If c1 ¼ 0, then (A.3) reduces to

c2M2
3 þ c3M2

2 ¼ c; c3M2
1 ¼ c; c2M2

1 ¼ c:

Since M1 6¼ 0, the last two equations imply c2 ¼ c3. But then c2 ¼ c3 6¼ 0 (since otherwise

pðMÞ ¼ 0) and hence the first equation gives M2
1 ¼ M2

2 þM2
3 ; together with

M2
1 þM2

2 þM2
3 ¼ 1 this gives M1 ¼ 1=

ffiffiffi
2

p
, as in case (iii)

2. We now look for a solution to (A.3) with M1 ¼ 0 but nonzero M2 and M3. Eq. (A.3) reduces to

c1M2
3 ¼ c; c1M2

2 ¼ c: ðA:5Þ

When c1 ¼ 0 these equations are satisfied by allM2 andM3 (for c ¼ 0), so that all points on the circle

M1 ¼ 0 are critical points; but if c1 ¼ 0, then pðMÞ vanishes at all these points, so we do not consider
them. If instead c1 6¼ 0, then (A.5) lead to M2 ¼ M3 ¼ 1=

ffiffiffi
2

p
; thus the point ð0; 1ffiffi

2
p ; 1ffiffi

2
p Þ is a critical

point of pðMÞ. (For simplicity, in (i) we have formulated this fact without the restriction c1 6¼ 0 be-

cause, as we have just seen, this point is a critical point also when c1 ¼ 0.)

3. It only remains to look for solutions with M1 ¼ M2 ¼ 0 and M3 ¼ 1. Since p0ðMÞ vanishes at this

point, (0,0,1) is a critical point. However, p vanishes at this point. �
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Formulas (9) and (10) are obtained by observing that pðMÞ attains the values c1, c2, c3 at the three points
(A.1) and the value

4

k2
c1k2k3ð þ c2k3k1 þ c3k1k2Þ ¼

4c1c2c3
c21 þ c22 þ c23 � 2c1c2 � 2c2c3 � 2c1c3

at the point (A.2), if it exists. In case (iii) if ci ¼ 0 and cj ¼ ck, then pðMÞ has the constant value cj at all
points of the circle Mi ¼ 1=

ffiffiffi
2

p
.

Appendix B. Regions boundaries

The curve dividing the two SR regions is

x ¼ y
2� y

; 2�
ffiffiffi
2

p
< y < 1;

and corresponds to the fact that DSRðImax; Imid; IminÞ ¼ DSRðImin; Imid; ImaxÞ (namely jcSR2 ð1; y; xÞj ¼ jcSR2 ðx; y;
1Þj). The boundary of the 3R region is union of the two curves

x ¼ 2y
y2 � y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 4y þ 9y2 � 8y3 þ 2y4Þ=2

p
1� 3y þ 4y2

; 1 > y > y2  0:7274

and

x ¼ y
y2 � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 6y þ 6y2 � 4y3 þ y4

p
1� 2y þ 2y2

; y2 > y > y1  0:6766:

Precisely, y2 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
ð3=8Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=8Þ þ ð1=

ffiffiffi
6

p
Þ

q
and y1 ¼ ð1=6Þ � ð1=3aÞ þ ða=6Þ for a ¼ ð47þ 3

ffiffiffiffiffiffiffiffi
249

p
=

2Þ1=3. (The first curve corresponds to the condition cSR2 ðx; y; 1Þ ¼ �c3R2 ð1; y; xÞ and the second one corresponds
to cSR2 ðx; y; 1Þ ¼ c3R1 ð1; y; xÞ.)
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